Theorem sizeupto | index | src |

theorem sizeupto (n: nat): $ size (upto n) = n $;
StepHypRefExpression
1 leasym
size (upto n) <= n -> n <= size (upto n) -> size (upto n) = n
2 sizess
finite (upto n) -> (upto n C_ upto n <-> size (upto n) <= n)
3 finns
finite (upto n)
4 2, 3 ax_mp
upto n C_ upto n <-> size (upto n) <= n
5 ssid
upto n C_ upto n
6 4, 5 mpbi
size (upto n) <= n
7 1, 6 ax_mp
n <= size (upto n) -> size (upto n) = n
8 uptoss
upto n C_ upto (size (upto n)) <-> n <= size (upto n)
9 sssize
finite (upto n) <-> upto n C_ upto (size (upto n))
10 9, 3 mpbi
upto n C_ upto (size (upto n))
11 8, 10 mpbi
n <= size (upto n)
12 7, 11 ax_mp
size (upto n) = n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)