Theorem leasym | index | src |

theorem leasym (a b: nat): $ a <= b -> b <= a -> a = b $;
StepHypRefExpression
1 anl
a <= b /\ b <= a -> a <= b
2 anr
a <= b /\ b <= a -> b <= a
3 1, 2 leasymd
a <= b /\ b <= a -> a = b
4 3 exp
a <= b -> b <= a -> a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)