theorem eqlele (a b: nat): $ a = b <-> a <= b /\ b <= a $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqle | a = b -> a <= b |
|
2 | eqler | a = b -> b <= a |
|
3 | 1, 2 | iand | a = b -> a <= b /\ b <= a |
4 | leasym | a <= b -> b <= a -> a = b |
|
5 | 4 | imp | a <= b /\ b <= a -> a = b |
6 | 3, 5 | ibii | a = b <-> a <= b /\ b <= a |