theorem elBool (n: nat): $ n e. Bool <-> bool n $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(n e. Bool <-> n = 0 \/ n e. sn 1) -> (n = 0 \/ n e. sn 1 <-> bool n) -> (n e. Bool <-> bool n) |
2 |
|
elins |
n e. 0 ; sn 1 <-> n = 0 \/ n e. sn 1 |
3 |
2 |
conv Bool |
n e. Bool <-> n = 0 \/ n e. sn 1 |
4 |
1, 3 |
ax_mp |
(n = 0 \/ n e. sn 1 <-> bool n) -> (n e. Bool <-> bool n) |
5 |
|
bitr4 |
(n = 0 \/ n e. sn 1 <-> n = 0 \/ n = 1) -> (bool n <-> n = 0 \/ n = 1) -> (n = 0 \/ n e. sn 1 <-> bool n) |
6 |
|
elsn |
n e. sn 1 <-> n = 1 |
7 |
6 |
oreq2i |
n = 0 \/ n e. sn 1 <-> n = 0 \/ n = 1 |
8 |
5, 7 |
ax_mp |
(bool n <-> n = 0 \/ n = 1) -> (n = 0 \/ n e. sn 1 <-> bool n) |
9 |
|
bool01 |
bool n <-> n = 0 \/ n = 1 |
10 |
8, 9 |
ax_mp |
n = 0 \/ n e. sn 1 <-> bool n |
11 |
4, 10 |
ax_mp |
n e. Bool <-> bool n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)