Theorem sreclem2 | index | src |

theorem sreclem2 (f n: nat) {x: nat} (a b: nat x):
  $ f = \. x e. upto n, a -> b < n -> f @ b = N[b / x] a $;
StepHypRefExpression
1 applams
(\ x, a) @ b = N[b / x] a
2 eqlower2
finite ((\ x, a) |` upto n) -> (f == (\ x, a) |` upto n <-> f = lower ((\ x, a) |` upto n))
3 finlam
finite (upto n) -> finite ((\ x, a) |` upto n)
4 finns
finite (upto n)
5 3, 4 ax_mp
finite ((\ x, a) |` upto n)
6 2, 5 ax_mp
f == (\ x, a) |` upto n <-> f = lower ((\ x, a) |` upto n)
7 anl
f = \. x e. upto n, a /\ b < n -> f = \. x e. upto n, a
8 7 conv rlam
f = \. x e. upto n, a /\ b < n -> f = lower ((\ x, a) |` upto n)
9 6, 8 sylibr
f = \. x e. upto n, a /\ b < n -> f == (\ x, a) |` upto n
10 9 appeq1d
f = \. x e. upto n, a /\ b < n -> f @ b = ((\ x, a) |` upto n) @ b
11 resapp
b e. upto n -> ((\ x, a) |` upto n) @ b = (\ x, a) @ b
12 elupto
b e. upto n <-> b < n
13 anr
f = \. x e. upto n, a /\ b < n -> b < n
14 12, 13 sylibr
f = \. x e. upto n, a /\ b < n -> b e. upto n
15 11, 14 syl
f = \. x e. upto n, a /\ b < n -> ((\ x, a) |` upto n) @ b = (\ x, a) @ b
16 10, 15 eqtrd
f = \. x e. upto n, a /\ b < n -> f @ b = (\ x, a) @ b
17 1, 16 syl6eq
f = \. x e. upto n, a /\ b < n -> f @ b = N[b / x] a
18 17 exp
f = \. x e. upto n, a -> b < n -> f @ b = N[b / x] a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)