| Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | applams | (\ x, a) @ b = N[b / x] a | 
        
          | 2 |  | eqlower2 | finite ((\ x, a) |` upto n) -> (f == (\ x, a) |` upto n <-> f = lower ((\ x, a) |` upto n)) | 
        
          | 3 |  | finlam | finite (upto n) -> finite ((\ x, a) |` upto n) | 
        
          | 4 |  | finns | finite (upto n) | 
        
          | 5 | 3, 4 | ax_mp | finite ((\ x, a) |` upto n) | 
        
          | 6 | 2, 5 | ax_mp | f == (\ x, a) |` upto n <-> f = lower ((\ x, a) |` upto n) | 
        
          | 7 |  | anl | f = \. x e. upto n, a /\ b < n -> f = \. x e. upto n, a | 
        
          | 8 | 7 | conv rlam | f = \. x e. upto n, a /\ b < n -> f = lower ((\ x, a) |` upto n) | 
        
          | 9 | 6, 8 | sylibr | f = \. x e. upto n, a /\ b < n -> f == (\ x, a) |` upto n | 
        
          | 10 | 9 | appeq1d | f = \. x e. upto n, a /\ b < n -> f @ b = ((\ x, a) |` upto n) @ b | 
        
          | 11 |  | resapp | b e. upto n -> ((\ x, a) |` upto n) @ b = (\ x, a) @ b | 
        
          | 12 |  | elupto | b e. upto n <-> b < n | 
        
          | 13 |  | anr | f = \. x e. upto n, a /\ b < n -> b < n | 
        
          | 14 | 12, 13 | sylibr | f = \. x e. upto n, a /\ b < n -> b e. upto n | 
        
          | 15 | 11, 14 | syl | f = \. x e. upto n, a /\ b < n -> ((\ x, a) |` upto n) @ b = (\ x, a) @ b | 
        
          | 16 | 10, 15 | eqtrd | f = \. x e. upto n, a /\ b < n -> f @ b = (\ x, a) @ b | 
        
          | 17 | 1, 16 | syl6eq | f = \. x e. upto n, a /\ b < n -> f @ b = N[b / x] a | 
        
          | 18 | 17 | exp | f = \. x e. upto n, a -> b < n -> f @ b = N[b / x] a |