Step | Hyp | Ref | Expression |
1 |
|
applams |
(\ x, a) @ b = N[b / x] a |
2 |
|
eqlower2 |
finite ((\ x, a) |` upto n) -> (f == (\ x, a) |` upto n <-> f = lower ((\ x, a) |` upto n)) |
3 |
|
finlam |
finite (upto n) -> finite ((\ x, a) |` upto n) |
4 |
|
finns |
finite (upto n) |
5 |
3, 4 |
ax_mp |
finite ((\ x, a) |` upto n) |
6 |
2, 5 |
ax_mp |
f == (\ x, a) |` upto n <-> f = lower ((\ x, a) |` upto n) |
7 |
|
anl |
f = \. x e. upto n, a /\ b < n -> f = \. x e. upto n, a |
8 |
7 |
conv rlam |
f = \. x e. upto n, a /\ b < n -> f = lower ((\ x, a) |` upto n) |
9 |
6, 8 |
sylibr |
f = \. x e. upto n, a /\ b < n -> f == (\ x, a) |` upto n |
10 |
9 |
appeq1d |
f = \. x e. upto n, a /\ b < n -> f @ b = ((\ x, a) |` upto n) @ b |
11 |
|
resapp |
b e. upto n -> ((\ x, a) |` upto n) @ b = (\ x, a) @ b |
12 |
|
elupto |
b e. upto n <-> b < n |
13 |
|
anr |
f = \. x e. upto n, a /\ b < n -> b < n |
14 |
12, 13 |
sylibr |
f = \. x e. upto n, a /\ b < n -> b e. upto n |
15 |
11, 14 |
syl |
f = \. x e. upto n, a /\ b < n -> ((\ x, a) |` upto n) @ b = (\ x, a) @ b |
16 |
10, 15 |
eqtrd |
f = \. x e. upto n, a /\ b < n -> f @ b = (\ x, a) @ b |
17 |
1, 16 |
syl6eq |
f = \. x e. upto n, a /\ b < n -> f @ b = N[b / x] a |
18 |
17 |
exp |
f = \. x e. upto n, a -> b < n -> f @ b = N[b / x] a |