theorem eqlower2 (A: set) (a: nat): $ finite A -> (a == A <-> a = lower A) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqscomb | a == A <-> A == a | 
        
          | 2 |  | eqcomb | a = lower A <-> lower A = a | 
        
          | 3 |  | eqlower1 | finite A -> (A == a <-> lower A = a) | 
        
          | 4 | 1, 2, 3 | bitr4g | finite A -> (a == A <-> a = lower A) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)