Theorem eqlower2 | index | src |

theorem eqlower2 (A: set) (a: nat): $ finite A -> (a == A <-> a = lower A) $;
StepHypRefExpression
1 eqscomb
a == A <-> A == a
2 eqcomb
a = lower A <-> lower A = a
3 eqlower1
finite A -> (A == a <-> lower A = a)
4 1, 2, 3 bitr4g
finite A -> (a == A <-> a = lower A)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)