Theorem eqlower1 | index | src |

theorem eqlower1 (A: set) (a: nat): $ finite A -> (A == a <-> lower A = a) $;
StepHypRefExpression
1 lowerns
lower a = a
2 lowereq
A == a -> lower A = lower a
3 1, 2 syl6eq
A == a -> lower A = a
4 3 anwr
finite A /\ A == a -> lower A = a
5 eqlower
finite A <-> A == lower A
6 anl
finite A /\ lower A = a -> finite A
7 5, 6 sylib
finite A /\ lower A = a -> A == lower A
8 anr
finite A /\ lower A = a -> lower A = a
9 8 nseqd
finite A /\ lower A = a -> lower A == a
10 7, 9 eqstrd
finite A /\ lower A = a -> A == a
11 4, 10 ibida
finite A -> (A == a <-> lower A = a)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)