theorem eqlower1 (A: set) (a: nat): $ finite A -> (A == a <-> lower A = a) $;
Step | Hyp | Ref | Expression |
1 |
|
lowerns |
lower a = a |
2 |
|
lowereq |
A == a -> lower A = lower a |
3 |
1, 2 |
syl6eq |
A == a -> lower A = a |
4 |
3 |
anwr |
finite A /\ A == a -> lower A = a |
5 |
|
eqlower |
finite A <-> A == lower A |
6 |
|
anl |
finite A /\ lower A = a -> finite A |
7 |
5, 6 |
sylib |
finite A /\ lower A = a -> A == lower A |
8 |
|
anr |
finite A /\ lower A = a -> lower A = a |
9 |
8 |
nseqd |
finite A /\ lower A = a -> lower A == a |
10 |
7, 9 |
eqstrd |
finite A /\ lower A = a -> A == a |
11 |
4, 10 |
ibida |
finite A -> (A == a <-> lower A = a) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)