theorem lowerinj (A B: set):
  $ finite A -> finite B -> (A == B <-> lower A = lower B) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqlower | finite A <-> A == lower A | 
        
          | 2 |  | anl | finite A /\ finite B -> finite A | 
        
          | 3 | 1, 2 | sylib | finite A /\ finite B -> A == lower A | 
        
          | 4 | 3 | eqseq1d | finite A /\ finite B -> (A == B <-> lower A == B) | 
        
          | 5 |  | eqlower2 | finite B -> (lower A == B <-> lower A = lower B) | 
        
          | 6 | 5 | anwr | finite A /\ finite B -> (lower A == B <-> lower A = lower B) | 
        
          | 7 | 4, 6 | bitrd | finite A /\ finite B -> (A == B <-> lower A = lower B) | 
        
          | 8 | 7 | exp | finite A -> finite B -> (A == B <-> lower A = lower B) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)