theorem lowerinj (A B: set):
  $ finite A -> finite B -> (A == B <-> lower A = lower B) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqlower | 
          finite A <-> A == lower A  | 
        
        
          | 2 | 
           | 
          anl | 
          finite A /\ finite B -> finite A  | 
        
        
          | 3 | 
          1, 2 | 
          sylib | 
          finite A /\ finite B -> A == lower A  | 
        
        
          | 4 | 
          3 | 
          eqseq1d | 
          finite A /\ finite B -> (A == B <-> lower A == B)  | 
        
        
          | 5 | 
           | 
          eqlower2 | 
          finite B -> (lower A == B <-> lower A = lower B)  | 
        
        
          | 6 | 
          5 | 
          anwr | 
          finite A /\ finite B -> (lower A == B <-> lower A = lower B)  | 
        
        
          | 7 | 
          4, 6 | 
          bitrd | 
          finite A /\ finite B -> (A == B <-> lower A = lower B)  | 
        
        
          | 8 | 
          7 | 
          exp | 
          finite A -> finite B -> (A == B <-> lower A = lower B)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)