Theorem lowerinj | index | src |

theorem lowerinj (A B: set):
  $ finite A -> finite B -> (A == B <-> lower A = lower B) $;
StepHypRefExpression
1 eqlower
finite A <-> A == lower A
2 anl
finite A /\ finite B -> finite A
3 1, 2 sylib
finite A /\ finite B -> A == lower A
4 3 eqseq1d
finite A /\ finite B -> (A == B <-> lower A == B)
5 eqlower2
finite B -> (lower A == B <-> lower A = lower B)
6 5 anwr
finite A /\ finite B -> (lower A == B <-> lower A = lower B)
7 4, 6 bitrd
finite A /\ finite B -> (A == B <-> lower A = lower B)
8 7 exp
finite A -> finite B -> (A == B <-> lower A = lower B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)