theorem lowerinj (A B: set):
$ finite A -> finite B -> (A == B <-> lower A = lower B) $;
Step | Hyp | Ref | Expression |
1 |
|
eqlower |
finite A <-> A == lower A |
2 |
|
anl |
finite A /\ finite B -> finite A |
3 |
1, 2 |
sylib |
finite A /\ finite B -> A == lower A |
4 |
3 |
eqseq1d |
finite A /\ finite B -> (A == B <-> lower A == B) |
5 |
|
eqlower2 |
finite B -> (lower A == B <-> lower A = lower B) |
6 |
5 |
anwr |
finite A /\ finite B -> (lower A == B <-> lower A = lower B) |
7 |
4, 6 |
bitrd |
finite A /\ finite B -> (A == B <-> lower A = lower B) |
8 |
7 |
exp |
finite A -> finite B -> (A == B <-> lower A = lower B) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)