theorem sneqd (_G: wff) (_a1 _a2: nat): $ _G -> _a1 = _a2 $ > $ _G -> sn _a1 = sn _a2 $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd | _G -> 2 = 2 | |
| 2 | hyp _ah | _G -> _a1 = _a2 | |
| 3 | 1, 2 | poweqd | _G -> 2 ^ _a1 = 2 ^ _a2 | 
| 4 | 3 | conv sn | _G -> sn _a1 = sn _a2 |