theorem sneqd (_G: wff) (_a1 _a2: nat): $ _G -> _a1 = _a2 $ > $ _G -> sn _a1 = sn _a2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | _G -> 2 = 2 |
|
2 | hyp _ah | _G -> _a1 = _a2 |
|
3 | 1, 2 | poweqd | _G -> 2 ^ _a1 = 2 ^ _a2 |
4 | 3 | conv sn | _G -> sn _a1 = sn _a2 |