Theorem sreclem | index | src |

theorem sreclem (f n: nat) {x: nat} (a: nat x):
  $ f = \. x e. upto n, a -> size (Dom f) = n $;
StepHypRefExpression
1 sizeupto
size (upto n) = n
2 dmrlam
Dom (\. x e. upto n, a) == upto n
3 nseq
f = \. x e. upto n, a -> f == \. x e. upto n, a
4 3 dmeqd
f = \. x e. upto n, a -> Dom f == Dom (\. x e. upto n, a)
5 2, 4 syl6eqs
f = \. x e. upto n, a -> Dom f == upto n
6 5 sizeeqd
f = \. x e. upto n, a -> size (Dom f) = size (upto n)
7 1, 6 syl6eq
f = \. x e. upto n, a -> size (Dom f) = n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)