theorem sreclem (f n: nat) {x: nat} (a: nat x):
  $ f = \. x e. upto n, a -> size (Dom f) = n $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          sizeupto | 
          size (upto n) = n  | 
        
        
          | 2 | 
           | 
          dmrlam | 
          Dom (\. x e. upto n, a) == upto n  | 
        
        
          | 3 | 
           | 
          nseq | 
          f = \. x e. upto n, a -> f == \. x e. upto n, a  | 
        
        
          | 4 | 
          3 | 
          dmeqd | 
          f = \. x e. upto n, a -> Dom f == Dom (\. x e. upto n, a)  | 
        
        
          | 5 | 
          2, 4 | 
          syl6eqs | 
          f = \. x e. upto n, a -> Dom f == upto n  | 
        
        
          | 6 | 
          5 | 
          sizeeqd | 
          f = \. x e. upto n, a -> size (Dom f) = size (upto n)  | 
        
        
          | 7 | 
          1, 6 | 
          syl6eq | 
          f = \. x e. upto n, a -> size (Dom f) = n  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)