Theorem srecrlam | index | src |

theorem srecrlam (S: set) {i: nat} (n: nat):
  $ \. i e. upto n, srec S i = srecaux S n $;
StepHypRefExpression
1 axext
\. i e. upto n, srec S i == srecaux S n -> \. i e. upto n, srec S i = srecaux S n
2 eqstr
\. i e. upto n, srec S i == (\ i, srec S i) |` upto n -> (\ i, srec S i) |` upto n == srecaux S n -> \. i e. upto n, srec S i == srecaux S n
3 rlameqs
\. i e. upto n, srec S i == (\ i, srec S i) |` upto n
4 2, 3 ax_mp
(\ i, srec S i) |` upto n == srecaux S n -> \. i e. upto n, srec S i == srecaux S n
5 srecres
(\ i, srec S i) |` upto n == srecaux S n
6 4, 5 ax_mp
\. i e. upto n, srec S i == srecaux S n
7 1, 6 ax_mp
\. i e. upto n, srec S i = srecaux S n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)