Step | Hyp | Ref | Expression |
1 |
|
eqstr3 |
(\ i, srecaux S n @ i) |` upto n == (\ i, srec S i) |` upto n -> (\ i, srecaux S n @ i) |` upto n == srecaux S n -> (\ i, srec S i) |` upto n == srecaux S n |
2 |
|
reslameq |
A. i (i e. upto n -> srecaux S n @ i = srec S i) -> (\ i, srecaux S n @ i) |` upto n == (\ i, srec S i) |` upto n |
3 |
|
elupto |
i e. upto n <-> i < n |
4 |
|
srecauxapp |
i < n -> srecaux S n @ i = srec S i |
5 |
3, 4 |
sylbi |
i e. upto n -> srecaux S n @ i = srec S i |
6 |
5 |
ax_gen |
A. i (i e. upto n -> srecaux S n @ i = srec S i) |
7 |
2, 6 |
ax_mp |
(\ i, srecaux S n @ i) |` upto n == (\ i, srec S i) |` upto n |
8 |
1, 7 |
ax_mp |
(\ i, srecaux S n @ i) |` upto n == srecaux S n -> (\ i, srec S i) |` upto n == srecaux S n |
9 |
|
eqstr3 |
(\ i, srecaux S n @ i) |` Dom (srecaux S n) == (\ i, srecaux S n @ i) |` upto n ->
(\ i, srecaux S n @ i) |` Dom (srecaux S n) == srecaux S n ->
(\ i, srecaux S n @ i) |` upto n == srecaux S n |
10 |
|
reseq2 |
Dom (srecaux S n) == upto n -> (\ i, srecaux S n @ i) |` Dom (srecaux S n) == (\ i, srecaux S n @ i) |` upto n |
11 |
|
dmsrecaux |
Dom (srecaux S n) == upto n |
12 |
10, 11 |
ax_mp |
(\ i, srecaux S n @ i) |` Dom (srecaux S n) == (\ i, srecaux S n @ i) |` upto n |
13 |
9, 12 |
ax_mp |
(\ i, srecaux S n @ i) |` Dom (srecaux S n) == srecaux S n -> (\ i, srecaux S n @ i) |` upto n == srecaux S n |
14 |
|
lamapp |
(\ i, srecaux S n @ i) |` Dom (srecaux S n) == srecaux S n <-> isfun (srecaux S n) |
15 |
|
srecauxisf |
isfun (srecaux S n) |
16 |
14, 15 |
mpbir |
(\ i, srecaux S n @ i) |` Dom (srecaux S n) == srecaux S n |
17 |
13, 16 |
ax_mp |
(\ i, srecaux S n @ i) |` upto n == srecaux S n |
18 |
8, 17 |
ax_mp |
(\ i, srec S i) |` upto n == srecaux S n |