theorem srecval2 (S: set) (n: nat): $ srec S n = S @ srecaux S n $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr3 |
srecaux S (suc n) @ n = srec S n -> srecaux S (suc n) @ n = S @ srecaux S n -> srec S n = S @ srecaux S n |
2 |
|
srecauxapp |
n < suc n -> srecaux S (suc n) @ n = srec S n |
3 |
|
ltsucid |
n < suc n |
4 |
2, 3 |
ax_mp |
srecaux S (suc n) @ n = srec S n |
5 |
1, 4 |
ax_mp |
srecaux S (suc n) @ n = S @ srecaux S n -> srec S n = S @ srecaux S n |
6 |
|
eqtr |
srecaux S (suc n) @ n = write (srecaux S n) n (S @ srecaux S n) @ n ->
write (srecaux S n) n (S @ srecaux S n) @ n = S @ srecaux S n ->
srecaux S (suc n) @ n = S @ srecaux S n |
7 |
|
appeq1 |
srecaux S (suc n) == write (srecaux S n) n (S @ srecaux S n) -> srecaux S (suc n) @ n = write (srecaux S n) n (S @ srecaux S n) @ n |
8 |
|
srecauxS |
srecaux S (suc n) == write (srecaux S n) n (S @ srecaux S n) |
9 |
7, 8 |
ax_mp |
srecaux S (suc n) @ n = write (srecaux S n) n (S @ srecaux S n) @ n |
10 |
6, 9 |
ax_mp |
write (srecaux S n) n (S @ srecaux S n) @ n = S @ srecaux S n -> srecaux S (suc n) @ n = S @ srecaux S n |
11 |
|
writeEq |
write (srecaux S n) n (S @ srecaux S n) @ n = S @ srecaux S n |
12 |
10, 11 |
ax_mp |
srecaux S (suc n) @ n = S @ srecaux S n |
13 |
5, 12 |
ax_mp |
srec S n = S @ srecaux S n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)