Theorem srecval2 | index | src |

theorem srecval2 (S: set) (n: nat): $ srec S n = S @ srecaux S n $;
StepHypRefExpression
1 eqtr3
srecaux S (suc n) @ n = srec S n -> srecaux S (suc n) @ n = S @ srecaux S n -> srec S n = S @ srecaux S n
2 srecauxapp
n < suc n -> srecaux S (suc n) @ n = srec S n
3 ltsucid
n < suc n
4 2, 3 ax_mp
srecaux S (suc n) @ n = srec S n
5 1, 4 ax_mp
srecaux S (suc n) @ n = S @ srecaux S n -> srec S n = S @ srecaux S n
6 eqtr
srecaux S (suc n) @ n = write (srecaux S n) n (S @ srecaux S n) @ n ->
  write (srecaux S n) n (S @ srecaux S n) @ n = S @ srecaux S n ->
  srecaux S (suc n) @ n = S @ srecaux S n
7 appeq1
srecaux S (suc n) == write (srecaux S n) n (S @ srecaux S n) -> srecaux S (suc n) @ n = write (srecaux S n) n (S @ srecaux S n) @ n
8 srecauxS
srecaux S (suc n) == write (srecaux S n) n (S @ srecaux S n)
9 7, 8 ax_mp
srecaux S (suc n) @ n = write (srecaux S n) n (S @ srecaux S n) @ n
10 6, 9 ax_mp
write (srecaux S n) n (S @ srecaux S n) @ n = S @ srecaux S n -> srecaux S (suc n) @ n = S @ srecaux S n
11 writeEq
write (srecaux S n) n (S @ srecaux S n) @ n = S @ srecaux S n
12 10, 11 ax_mp
srecaux S (suc n) @ n = S @ srecaux S n
13 5, 12 ax_mp
srec S n = S @ srecaux S n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)