Theorem dmrlam | index | src |

theorem dmrlam {x: nat} (a b: nat x): $ Dom (\. x e. a, b) == a $;
StepHypRefExpression
1 eqstr
Dom (\. x e. a, b) == Dom ((\ x, b) |` a) -> Dom ((\ x, b) |` a) == a -> Dom (\. x e. a, b) == a
2 dmeq
\. x e. a, b == (\ x, b) |` a -> Dom (\. x e. a, b) == Dom ((\ x, b) |` a)
3 rlameqs
\. x e. a, b == (\ x, b) |` a
4 2, 3 ax_mp
Dom (\. x e. a, b) == Dom ((\ x, b) |` a)
5 1, 4 ax_mp
Dom ((\ x, b) |` a) == a -> Dom (\. x e. a, b) == a
6 dmreslam
Dom ((\ x, b) |` a) == a
7 5, 6 ax_mp
Dom (\. x e. a, b) == a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)