theorem rlamisf {x: nat} (a b: nat x): $ isfun (\. x e. a, b) $;
Step | Hyp | Ref | Expression |
1 |
|
isfss |
\. x e. a, b C_ \ x, b -> isfun (\ x, b) -> isfun (\. x e. a, b) |
2 |
|
rlamss |
\. x e. a, b C_ \ x, b |
3 |
1, 2 |
ax_mp |
isfun (\ x, b) -> isfun (\. x e. a, b) |
4 |
|
lamisf |
isfun (\ x, b) |
5 |
3, 4 |
ax_mp |
isfun (\. x e. a, b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)