Theorem rnrlam | index | src |

theorem rnrlam (a: nat) {x: nat} (b: nat x):
  $ Ran (\. x e. a, b) == (\ x, b) '' a $;
StepHypRefExpression
1 eqstr
Ran (\. x e. a, b) == Ran ((\ x, b) |` a) -> Ran ((\ x, b) |` a) == (\ x, b) '' a -> Ran (\. x e. a, b) == (\ x, b) '' a
2 rneq
\. x e. a, b == (\ x, b) |` a -> Ran (\. x e. a, b) == Ran ((\ x, b) |` a)
3 rlameqs
\. x e. a, b == (\ x, b) |` a
4 2, 3 ax_mp
Ran (\. x e. a, b) == Ran ((\ x, b) |` a)
5 1, 4 ax_mp
Ran ((\ x, b) |` a) == (\ x, b) '' a -> Ran (\. x e. a, b) == (\ x, b) '' a
6 rnres
Ran ((\ x, b) |` a) == (\ x, b) '' a
7 5, 6 ax_mp
Ran (\. x e. a, b) == (\ x, b) '' a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)