theorem mulmoddi (a b c: nat): $ a * (b % c) = a * b % (a * c) $;
Step | Hyp | Ref | Expression |
1 |
|
muleq1 |
a = 0 -> a * (b % c) = 0 * (b % c) |
2 |
|
mul01 |
0 * (b % c) = 0 |
3 |
|
mod0 |
0 % 0 = 0 |
4 |
|
mul01 |
0 * b = 0 |
5 |
|
muleq1 |
a = 0 -> a * b = 0 * b |
6 |
4, 5 |
syl6eq |
a = 0 -> a * b = 0 |
7 |
|
mul01 |
0 * c = 0 |
8 |
|
muleq1 |
a = 0 -> a * c = 0 * c |
9 |
7, 8 |
syl6eq |
a = 0 -> a * c = 0 |
10 |
6, 9 |
modeqd |
a = 0 -> a * b % (a * c) = 0 % 0 |
11 |
3, 10 |
syl6eq |
a = 0 -> a * b % (a * c) = 0 |
12 |
2, 11 |
syl6eqr |
a = 0 -> a * b % (a * c) = 0 * (b % c) |
13 |
1, 12 |
eqtr4d |
a = 0 -> a * (b % c) = a * b % (a * c) |
14 |
|
divmoddilem |
a != 0 -> a * b // (a * c) = b // c /\ a * b % (a * c) = a * (b % c) |
15 |
14 |
conv ne |
~a = 0 -> a * b // (a * c) = b // c /\ a * b % (a * c) = a * (b % c) |
16 |
15 |
anrd |
~a = 0 -> a * b % (a * c) = a * (b % c) |
17 |
16 |
eqcomd |
~a = 0 -> a * (b % c) = a * b % (a * c) |
18 |
13, 17 |
cases |
a * (b % c) = a * b % (a * c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)