Theorem mdmcan2 | index | src |

theorem mdmcan2 (a b c: nat): $ c != 0 -> a * c // (b * c) = a // b $;
StepHypRefExpression
1 diveq
a * c = c * a -> b * c = c * b -> a * c // (b * c) = c * a // (c * b)
2 mulcom
a * c = c * a
3 1, 2 ax_mp
b * c = c * b -> a * c // (b * c) = c * a // (c * b)
4 mulcom
b * c = c * b
5 3, 4 ax_mp
a * c // (b * c) = c * a // (c * b)
6 mdmcan1
c != 0 -> c * a // (c * b) = a // b
7 5, 6 syl5eq
c != 0 -> a * c // (b * c) = a // b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)