Theorem mdmcan1 | index | src |

theorem mdmcan1 (a b c: nat): $ a != 0 -> a * b // (a * c) = b // c $;
StepHypRefExpression
1 divmoddilem
a != 0 -> a * b // (a * c) = b // c /\ a * b % (a * c) = a * (b % c)
2 1 anld
a != 0 -> a * b // (a * c) = b // c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)