theorem mulmoddir (a b c: nat): $ a % b * c = a * c % (b * c) $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
a % b * c = c * (a % b) -> c * (a % b) = a * c % (b * c) -> a % b * c = a * c % (b * c) |
2 |
|
mulcom |
a % b * c = c * (a % b) |
3 |
1, 2 |
ax_mp |
c * (a % b) = a * c % (b * c) -> a % b * c = a * c % (b * c) |
4 |
|
eqtr |
c * (a % b) = c * a % (c * b) -> c * a % (c * b) = a * c % (b * c) -> c * (a % b) = a * c % (b * c) |
5 |
|
mulmoddi |
c * (a % b) = c * a % (c * b) |
6 |
4, 5 |
ax_mp |
c * a % (c * b) = a * c % (b * c) -> c * (a % b) = a * c % (b * c) |
7 |
|
modeq |
c * a = a * c -> c * b = b * c -> c * a % (c * b) = a * c % (b * c) |
8 |
|
mulcom |
c * a = a * c |
9 |
7, 8 |
ax_mp |
c * b = b * c -> c * a % (c * b) = a * c % (b * c) |
10 |
|
mulcom |
c * b = b * c |
11 |
9, 10 |
ax_mp |
c * a % (c * b) = a * c % (b * c) |
12 |
6, 11 |
ax_mp |
c * (a % b) = a * c % (b * c) |
13 |
3, 12 |
ax_mp |
a % b * c = a * c % (b * c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)