theorem ltpow2 (a b c: nat): $ 1 < a -> (b < c <-> a ^ b < a ^ c) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
mul11 |
1 * a ^ b = a ^ b |
| 2 |
1 |
a1i |
1 < a /\ b < c -> 1 * a ^ b = a ^ b |
| 3 |
|
powadd |
a ^ (c - b + b) = a ^ (c - b) * a ^ b |
| 4 |
|
npcan |
b <= c -> c - b + b = c |
| 5 |
|
ltle |
b < c -> b <= c |
| 6 |
5 |
anwr |
1 < a /\ b < c -> b <= c |
| 7 |
4, 6 |
syl |
1 < a /\ b < c -> c - b + b = c |
| 8 |
7 |
poweq2d |
1 < a /\ b < c -> a ^ (c - b + b) = a ^ c |
| 9 |
3, 8 |
syl5eqr |
1 < a /\ b < c -> a ^ (c - b) * a ^ b = a ^ c |
| 10 |
2, 9 |
lteqd |
1 < a /\ b < c -> (1 * a ^ b < a ^ (c - b) * a ^ b <-> a ^ b < a ^ c) |
| 11 |
|
ltmul1 |
0 < a ^ b -> (1 < a ^ (c - b) <-> 1 * a ^ b < a ^ (c - b) * a ^ b) |
| 12 |
|
powpos |
0 < a -> 0 < a ^ b |
| 13 |
|
lttr |
0 < 1 -> 1 < a -> 0 < a |
| 14 |
|
d0lt1 |
0 < 1 |
| 15 |
13, 14 |
ax_mp |
1 < a -> 0 < a |
| 16 |
15 |
anwl |
1 < a /\ b < c -> 0 < a |
| 17 |
12, 16 |
syl |
1 < a /\ b < c -> 0 < a ^ b |
| 18 |
11, 17 |
syl |
1 < a /\ b < c -> (1 < a ^ (c - b) <-> 1 * a ^ b < a ^ (c - b) * a ^ b) |
| 19 |
|
subpos |
b < c <-> 0 < c - b |
| 20 |
19 |
conv d1, lt |
b < c <-> 1 <= c - b |
| 21 |
|
anr |
1 < a /\ b < c -> b < c |
| 22 |
20, 21 |
sylib |
1 < a /\ b < c -> 1 <= c - b |
| 23 |
|
powltid2 |
1 < a -> c - b < a ^ (c - b) |
| 24 |
23 |
anwl |
1 < a /\ b < c -> c - b < a ^ (c - b) |
| 25 |
22, 24 |
lelttrd |
1 < a /\ b < c -> 1 < a ^ (c - b) |
| 26 |
18, 25 |
mpbid |
1 < a /\ b < c -> 1 * a ^ b < a ^ (c - b) * a ^ b |
| 27 |
10, 26 |
mpbid |
1 < a /\ b < c -> a ^ b < a ^ c |
| 28 |
|
ltnle |
a ^ b < a ^ c <-> ~a ^ c <= a ^ b |
| 29 |
|
ltnle |
b < c <-> ~c <= b |
| 30 |
28, 29 |
imeqi |
a ^ b < a ^ c -> b < c <-> ~a ^ c <= a ^ b -> ~c <= b |
| 31 |
|
lepow2a |
a != 0 -> c <= b -> a ^ c <= a ^ b |
| 32 |
|
lt01 |
0 < a <-> a != 0 |
| 33 |
32, 15 |
sylib |
1 < a -> a != 0 |
| 34 |
31, 33 |
syl |
1 < a -> c <= b -> a ^ c <= a ^ b |
| 35 |
34 |
con3d |
1 < a -> ~a ^ c <= a ^ b -> ~c <= b |
| 36 |
30, 35 |
sylibr |
1 < a -> a ^ b < a ^ c -> b < c |
| 37 |
36 |
imp |
1 < a /\ a ^ b < a ^ c -> b < c |
| 38 |
27, 37 |
ibida |
1 < a -> (b < c <-> a ^ b < a ^ c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)