Theorem lepow2a | index | src |

theorem lepow2a (a b c: nat): $ a != 0 -> b <= c -> a ^ b <= a ^ c $;
StepHypRefExpression
1 powne0
a != 0 -> a ^ c != 0
2 1 anwl
a != 0 /\ b <= c -> a ^ c != 0
3 powdvd
b <= c -> a ^ b || a ^ c
4 3 anwr
a != 0 /\ b <= c -> a ^ b || a ^ c
5 2, 4 dvdle
a != 0 /\ b <= c -> a ^ b <= a ^ c
6 5 exp
a != 0 -> b <= c -> a ^ b <= a ^ c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)