Theorem powdvd | index | src |

theorem powdvd (a b c: nat): $ b <= c -> a ^ b || a ^ c $;
StepHypRefExpression
1 dvdmul1
a ^ b || a ^ (c - b) * a ^ b
2 powadd
a ^ (c - b + b) = a ^ (c - b) * a ^ b
3 npcan
b <= c -> c - b + b = c
4 3 poweq2d
b <= c -> a ^ (c - b + b) = a ^ c
5 2, 4 syl5eqr
b <= c -> a ^ (c - b) * a ^ b = a ^ c
6 5 dvdeq2d
b <= c -> (a ^ b || a ^ (c - b) * a ^ b <-> a ^ b || a ^ c)
7 1, 6 mpbii
b <= c -> a ^ b || a ^ c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)