Theorem powdvd1 | index | src |

theorem powdvd1 (a b: nat): $ 0 < b -> a || a ^ b $;
StepHypRefExpression
1 dvdeq1
a ^ 1 = a -> (a ^ 1 || a ^ b <-> a || a ^ b)
2 pow12
a ^ 1 = a
3 1, 2 ax_mp
a ^ 1 || a ^ b <-> a || a ^ b
4 powdvd
suc 0 <= b -> a ^ suc 0 || a ^ b
5 4 conv d1, lt
0 < b -> a ^ 1 || a ^ b
6 3, 5 sylib
0 < b -> a || a ^ b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)