Step | Hyp | Ref | Expression |
1 |
|
bith |
y e. Dom (\ x, a) -> y e. _V -> (y e. Dom (\ x, a) <-> y e. _V) |
2 |
|
preldm |
y, N[y / x] a e. \ x, a -> y e. Dom (\ x, a) |
3 |
|
eleq2 |
\ x, a == \ z, N[z / x] a -> (y, N[y / x] a e. \ x, a <-> y, N[y / x] a e. \ z, N[z / x] a) |
4 |
|
cbvlams |
\ x, a == \ z, N[z / x] a |
5 |
3, 4 |
ax_mp |
y, N[y / x] a e. \ x, a <-> y, N[y / x] a e. \ z, N[z / x] a |
6 |
|
ellam |
y, N[y / x] a e. \ z, N[z / x] a <-> E. z y, N[y / x] a = z, N[z / x] a |
7 |
|
id |
z = y -> z = y |
8 |
|
sbneq1 |
z = y -> N[z / x] a = N[y / x] a |
9 |
7, 8 |
preqd |
z = y -> z, N[z / x] a = y, N[y / x] a |
10 |
9 |
eqeq2d |
z = y -> (y, N[y / x] a = z, N[z / x] a <-> y, N[y / x] a = y, N[y / x] a) |
11 |
10 |
iexe |
y, N[y / x] a = y, N[y / x] a -> E. z y, N[y / x] a = z, N[z / x] a |
12 |
|
eqid |
y, N[y / x] a = y, N[y / x] a |
13 |
11, 12 |
ax_mp |
E. z y, N[y / x] a = z, N[z / x] a |
14 |
6, 13 |
mpbir |
y, N[y / x] a e. \ z, N[z / x] a |
15 |
5, 14 |
mpbir |
y, N[y / x] a e. \ x, a |
16 |
2, 15 |
ax_mp |
y e. Dom (\ x, a) |
17 |
1, 16 |
ax_mp |
y e. _V -> (y e. Dom (\ x, a) <-> y e. _V) |
18 |
|
elv |
y e. _V |
19 |
17, 18 |
ax_mp |
y e. Dom (\ x, a) <-> y e. _V |
20 |
19 |
eqri |
Dom (\ x, a) == _V |