| Step | Hyp | Ref | Expression |
| 1 |
|
bith |
y e. Dom (\ x, a) -> y e. _V -> (y e. Dom (\ x, a) <-> y e. _V) |
| 2 |
|
preldm |
y, N[y / x] a e. \ x, a -> y e. Dom (\ x, a) |
| 3 |
|
eleq2 |
\ x, a == \ z, N[z / x] a -> (y, N[y / x] a e. \ x, a <-> y, N[y / x] a e. \ z, N[z / x] a) |
| 4 |
|
cbvlams |
\ x, a == \ z, N[z / x] a |
| 5 |
3, 4 |
ax_mp |
y, N[y / x] a e. \ x, a <-> y, N[y / x] a e. \ z, N[z / x] a |
| 6 |
|
ellam |
y, N[y / x] a e. \ z, N[z / x] a <-> E. z y, N[y / x] a = z, N[z / x] a |
| 7 |
|
id |
z = y -> z = y |
| 8 |
|
sbneq1 |
z = y -> N[z / x] a = N[y / x] a |
| 9 |
7, 8 |
preqd |
z = y -> z, N[z / x] a = y, N[y / x] a |
| 10 |
9 |
eqeq2d |
z = y -> (y, N[y / x] a = z, N[z / x] a <-> y, N[y / x] a = y, N[y / x] a) |
| 11 |
10 |
iexe |
y, N[y / x] a = y, N[y / x] a -> E. z y, N[y / x] a = z, N[z / x] a |
| 12 |
|
eqid |
y, N[y / x] a = y, N[y / x] a |
| 13 |
11, 12 |
ax_mp |
E. z y, N[y / x] a = z, N[z / x] a |
| 14 |
6, 13 |
mpbir |
y, N[y / x] a e. \ z, N[z / x] a |
| 15 |
5, 14 |
mpbir |
y, N[y / x] a e. \ x, a |
| 16 |
2, 15 |
ax_mp |
y e. Dom (\ x, a) |
| 17 |
1, 16 |
ax_mp |
y e. _V -> (y e. Dom (\ x, a) <-> y e. _V) |
| 18 |
|
elv |
y e. _V |
| 19 |
17, 18 |
ax_mp |
y e. Dom (\ x, a) <-> y e. _V |
| 20 |
19 |
eqri |
Dom (\ x, a) == _V |