Theorem sapprapp | index | src |

theorem sapprapp (F: set) (a b: nat): $ F @@ a @' b == F @' (a, b) $;
StepHypRefExpression
1 eqidd
_1 = b -> y = y
2 eqsidd
_1 = b -> F == F
3 eqidd
_1 = b -> a = a
4 id
_1 = b -> _1 = b
5 3, 4 preqd
_1 = b -> a, _1 = a, b
6 2, 5 rappeqd
_1 = b -> F @' (a, _1) == F @' (a, b)
7 1, 6 eleqd
_1 = b -> (y e. F @' (a, _1) <-> y e. F @' (a, b))
8 7 elsabe
b, y e. S\ _1, F @' (a, _1) <-> y e. F @' (a, b)
9 8 conv sapp
b, y e. F @@ a <-> y e. F @' (a, b)
10 9 eqab1i
{y | b, y e. F @@ a} == F @' (a, b)
11 10 conv rapp
F @@ a @' b == F @' (a, b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)