Theorem sappapp | index | src |

theorem sappapp (F: set) (a b: nat): $ F @@ a @ b = F @ (a, b) $;
StepHypRefExpression
1 theeq
{a1 | b, a1 e. F @@ a} == {a2 | (a, b), a2 e. F} -> the {a1 | b, a1 e. F @@ a} = the {a2 | (a, b), a2 e. F}
2 1 conv app
{a1 | b, a1 e. F @@ a} == {a2 | (a, b), a2 e. F} -> F @@ a @ b = F @ (a, b)
3 sapprapp
F @@ a @' b == F @' (a, b)
4 3 conv rapp
{a1 | b, a1 e. F @@ a} == {a2 | (a, b), a2 e. F}
5 2, 4 ax_mp
F @@ a @ b = F @ (a, b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)