Theorem nfsapp | index | src |

theorem nfsapp {x: nat} (F: set x) (a: nat x):
  $ FS/ x F $ >
  $ FN/ x a $ >
  $ FS/ x F @@ a $;
StepHypRefExpression
1 hyp h1
FS/ x F
2 hyp h2
FN/ x a
3 nfnv
FN/ x a1
4 2, 3 nfpr
FN/ x a, a1
5 1, 4 nfrapp
FS/ x F @' (a, a1)
6 5 nfsab
FS/ x S\ a1, F @' (a, a1)
7 6 conv sapp
FS/ x F @@ a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)