theorem nfsapp {x: nat} (F: set x) (a: nat x): $ FS/ x F $ > $ FN/ x a $ > $ FS/ x F @@ a $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | FS/ x F |
|
2 | hyp h2 | FN/ x a |
|
3 | nfnv | FN/ x a1 |
|
4 | 2, 3 | nfpr | FN/ x a, a1 |
5 | 1, 4 | nfrapp | FS/ x F @' (a, a1) |
6 | 5 | nfsab | FS/ x S\ a1, F @' (a, a1) |
7 | 6 | conv sapp | FS/ x F @@ a |