theorem sabxab (A: set) (G: wff) {x y: nat} (B: set x): $ G -> y e. B -> x e. A $ > $ G -> S\ x, B == X\ x e. A, B $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsabs | z, y e. S\ x, B <-> y e. S[z / x] B |
|
2 | elxabs | z, y e. X\ x e. A, B <-> z e. A /\ y e. S[z / x] B |
|
3 | bian1a | (y e. S[z / x] B -> z e. A) -> (z e. A /\ y e. S[z / x] B <-> y e. S[z / x] B) |
|
4 | nfv | F/ x G |
|
5 | nfsbs1 | FS/ x S[z / x] B |
|
6 | 5 | nfel2 | F/ x y e. S[z / x] B |
7 | nfv | F/ x z e. A |
|
8 | 6, 7 | nfim | F/ x y e. S[z / x] B -> z e. A |
9 | 4, 8 | nfim | F/ x G -> y e. S[z / x] B -> z e. A |
10 | hyp h | G -> y e. B -> x e. A |
|
11 | sbsq | x = z -> B == S[z / x] B |
|
12 | 11 | eleq2d | x = z -> (y e. B <-> y e. S[z / x] B) |
13 | eleq1 | x = z -> (x e. A <-> z e. A) |
|
14 | 12, 13 | imeqd | x = z -> (y e. B -> x e. A <-> y e. S[z / x] B -> z e. A) |
15 | 14 | imeq2d | x = z -> (G -> y e. B -> x e. A <-> G -> y e. S[z / x] B -> z e. A) |
16 | 9, 10, 15 | sbethh | G -> y e. S[z / x] B -> z e. A |
17 | 3, 16 | syl | G -> (z e. A /\ y e. S[z / x] B <-> y e. S[z / x] B) |
18 | 17 | bicomd | G -> (y e. S[z / x] B <-> z e. A /\ y e. S[z / x] B) |
19 | 1, 2, 18 | bitr4g | G -> (z, y e. S\ x, B <-> z, y e. X\ x e. A, B) |
20 | 19 | eqrd2 | G -> S\ x, B == X\ x e. A, B |