theorem sabxab (A: set) (G: wff) {x y: nat} (B: set x):
$ G -> y e. B -> x e. A $ >
$ G -> S\ x, B == X\ x e. A, B $;
| Step | Hyp | Ref | Expression |
| 1 |
|
elsabs |
z, y e. S\ x, B <-> y e. S[z / x] B |
| 2 |
|
elxabs |
z, y e. X\ x e. A, B <-> z e. A /\ y e. S[z / x] B |
| 3 |
|
bian1a |
(y e. S[z / x] B -> z e. A) -> (z e. A /\ y e. S[z / x] B <-> y e. S[z / x] B) |
| 4 |
|
nfv |
F/ x G |
| 5 |
|
nfsbs1 |
FS/ x S[z / x] B |
| 6 |
5 |
nfel2 |
F/ x y e. S[z / x] B |
| 7 |
|
nfv |
F/ x z e. A |
| 8 |
6, 7 |
nfim |
F/ x y e. S[z / x] B -> z e. A |
| 9 |
4, 8 |
nfim |
F/ x G -> y e. S[z / x] B -> z e. A |
| 10 |
|
hyp h |
G -> y e. B -> x e. A |
| 11 |
|
sbsq |
x = z -> B == S[z / x] B |
| 12 |
11 |
eleq2d |
x = z -> (y e. B <-> y e. S[z / x] B) |
| 13 |
|
eleq1 |
x = z -> (x e. A <-> z e. A) |
| 14 |
12, 13 |
imeqd |
x = z -> (y e. B -> x e. A <-> y e. S[z / x] B -> z e. A) |
| 15 |
14 |
imeq2d |
x = z -> (G -> y e. B -> x e. A <-> G -> y e. S[z / x] B -> z e. A) |
| 16 |
9, 10, 15 |
sbethh |
G -> y e. S[z / x] B -> z e. A |
| 17 |
3, 16 |
syl |
G -> (z e. A /\ y e. S[z / x] B <-> y e. S[z / x] B) |
| 18 |
17 |
bicomd |
G -> (y e. S[z / x] B <-> z e. A /\ y e. S[z / x] B) |
| 19 |
1, 2, 18 |
bitr4g |
G -> (z, y e. S\ x, B <-> z, y e. X\ x e. A, B) |
| 20 |
19 |
eqrd2 |
G -> S\ x, B == X\ x e. A, B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)