theorem xpeqd (_G: wff) (_A1 _A2 _B1 _B2: set): $ _G -> _A1 == _A2 $ > $ _G -> _B1 == _B2 $ > $ _G -> Xp _A1 _B1 == Xp _A2 _B2 $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp _Ah | _G -> _A1 == _A2 |
|
| 2 | hyp _Bh | _G -> _B1 == _B2 |
|
| 3 | 1, 2 | xabeqd | _G -> X\ x e. _A1, _B1 == X\ x e. _A2, _B2 |
| 4 | 3 | conv Xp | _G -> Xp _A1 _B1 == Xp _A2 _B2 |