Theorem rexral | index | src |

theorem rexral {x y: nat} (a: wff x) (b: wff y) (c: wff x y):
  $ E. x (a /\ A. y (b -> c)) -> A. y (b -> E. x (a /\ c)) $;
StepHypRefExpression
1 exral
E. x A. y (b -> a /\ c) -> A. y (b -> E. x (a /\ c))
2 alan1
A. y (a /\ (b -> c)) <-> a /\ A. y (b -> c)
3 imancom
a /\ (b -> c) -> b -> a /\ c
4 3 alimi
A. y (a /\ (b -> c)) -> A. y (b -> a /\ c)
5 2, 4 sylbir
a /\ A. y (b -> c) -> A. y (b -> a /\ c)
6 5 eximi
E. x (a /\ A. y (b -> c)) -> E. x A. y (b -> a /\ c)
7 1, 6 syl
E. x (a /\ A. y (b -> c)) -> A. y (b -> E. x (a /\ c))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)