theorem rexim1 (b: wff) {x: nat} (a c: wff x):
$ E. x (a /\ (b -> c)) -> b -> E. x (a /\ c) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpcom | b -> (b -> c) -> c |
|
| 2 | 1 | anim2d | b -> a /\ (b -> c) -> a /\ c |
| 3 | 2 | eximd | b -> E. x (a /\ (b -> c)) -> E. x (a /\ c) |
| 4 | 3 | com12 | E. x (a /\ (b -> c)) -> b -> E. x (a /\ c) |