Theorem rexim1 | index | src |

theorem rexim1 (b: wff) {x: nat} (a c: wff x):
  $ E. x (a /\ (b -> c)) -> b -> E. x (a /\ c) $;
StepHypRefExpression
1 mpcom
b -> (b -> c) -> c
2 1 anim2d
b -> a /\ (b -> c) -> a /\ c
3 2 eximd
b -> E. x (a /\ (b -> c)) -> E. x (a /\ c)
4 3 com12
E. x (a /\ (b -> c)) -> b -> E. x (a /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)