theorem eqerd (G: wff) (a: nat) (p: wff) {x: nat}:
$ G -> a = x -> p $ >
$ G -> p $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax_6 | E. x x = a |
|
| 2 | eqcom | x = a -> a = x |
|
| 3 | hyp h | G -> a = x -> p |
|
| 4 | 2, 3 | syl5 | G -> x = a -> p |
| 5 | 4 | eexd | G -> E. x x = a -> p |
| 6 | 1, 5 | mpi | G -> p |