Theorem prco | index | src |

theorem prco (A B: set) (x: nat) {y: nat} (z: nat):
  $ x, z e. A o> B <-> E. y (x, y e. A /\ y, z e. B) $;
StepHypRefExpression
1 id
_1 = x -> _1 = x
2 1 anwl
_1 = x /\ _2 = z -> _1 = x
3 eqidd
_1 = x /\ _2 = z -> y = y
4 2, 3 preqd
_1 = x /\ _2 = z -> _1, y = x, y
5 eqsidd
_1 = x /\ _2 = z -> A == A
6 4, 5 eleqd
_1 = x /\ _2 = z -> (_1, y e. A <-> x, y e. A)
7 id
_2 = z -> _2 = z
8 7 anwr
_1 = x /\ _2 = z -> _2 = z
9 3, 8 preqd
_1 = x /\ _2 = z -> y, _2 = y, z
10 eqsidd
_1 = x /\ _2 = z -> B == B
11 9, 10 eleqd
_1 = x /\ _2 = z -> (y, _2 e. B <-> y, z e. B)
12 6, 11 aneqd
_1 = x /\ _2 = z -> (_1, y e. A /\ y, _2 e. B <-> x, y e. A /\ y, z e. B)
13 12 exeqd
_1 = x /\ _2 = z -> (E. y (_1, y e. A /\ y, _2 e. B) <-> E. y (x, y e. A /\ y, z e. B))
14 13 elabed
_1 = x -> (z e. {_2 | E. y (_1, y e. A /\ y, _2 e. B)} <-> E. y (x, y e. A /\ y, z e. B))
15 14 elsabe
x, z e. S\ _1, {_2 | E. y (_1, y e. A /\ y, _2 e. B)} <-> E. y (x, y e. A /\ y, z e. B)
16 15 conv comp
x, z e. A o> B <-> E. y (x, y e. A /\ y, z e. B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)