theorem prco (A B: set) (x: nat) {y: nat} (z: nat):
$ x, z e. A o> B <-> E. y (x, y e. A /\ y, z e. B) $;
Step | Hyp | Ref | Expression |
1 |
|
id |
_1 = x -> _1 = x |
2 |
1 |
anwl |
_1 = x /\ _2 = z -> _1 = x |
3 |
|
eqidd |
_1 = x /\ _2 = z -> y = y |
4 |
2, 3 |
preqd |
_1 = x /\ _2 = z -> _1, y = x, y |
5 |
|
eqsidd |
_1 = x /\ _2 = z -> A == A |
6 |
4, 5 |
eleqd |
_1 = x /\ _2 = z -> (_1, y e. A <-> x, y e. A) |
7 |
|
id |
_2 = z -> _2 = z |
8 |
7 |
anwr |
_1 = x /\ _2 = z -> _2 = z |
9 |
3, 8 |
preqd |
_1 = x /\ _2 = z -> y, _2 = y, z |
10 |
|
eqsidd |
_1 = x /\ _2 = z -> B == B |
11 |
9, 10 |
eleqd |
_1 = x /\ _2 = z -> (y, _2 e. B <-> y, z e. B) |
12 |
6, 11 |
aneqd |
_1 = x /\ _2 = z -> (_1, y e. A /\ y, _2 e. B <-> x, y e. A /\ y, z e. B) |
13 |
12 |
exeqd |
_1 = x /\ _2 = z -> (E. y (_1, y e. A /\ y, _2 e. B) <-> E. y (x, y e. A /\ y, z e. B)) |
14 |
13 |
elabed |
_1 = x -> (z e. {_2 | E. y (_1, y e. A /\ y, _2 e. B)} <-> E. y (x, y e. A /\ y, z e. B)) |
15 |
14 |
elsabe |
x, z e. S\ _1, {_2 | E. y (_1, y e. A /\ y, _2 e. B)} <-> E. y (x, y e. A /\ y, z e. B) |
16 |
15 |
conv comp |
x, z e. A o> B <-> E. y (x, y e. A /\ y, z e. B) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)