Theorem reseqd | index | src |

theorem reseqd (_G: wff) (_A1 _A2 _B1 _B2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> _B1 == _B2 $ >
  $ _G -> _A1 |` _B1 == _A2 |` _B2 $;
StepHypRefExpression
1 hyp _Ah
_G -> _A1 == _A2
2 hyp _Bh
_G -> _B1 == _B2
3 eqsidd
_G -> _V == _V
4 2, 3 xpeqd
_G -> Xp _B1 _V == Xp _B2 _V
5 1, 4 ineqd
_G -> _A1 i^i Xp _B1 _V == _A2 i^i Xp _B2 _V
6 5 conv res
_G -> _A1 |` _B1 == _A2 |` _B2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)