Theorem ineqd | index | src |

theorem ineqd (_G: wff) (_A1 _A2 _B1 _B2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> _B1 == _B2 $ >
  $ _G -> _A1 i^i _B1 == _A2 i^i _B2 $;
StepHypRefExpression
1 eqidd
_G -> x = x
2 hyp _Ah
_G -> _A1 == _A2
3 1, 2 eleqd
_G -> (x e. _A1 <-> x e. _A2)
4 hyp _Bh
_G -> _B1 == _B2
5 1, 4 eleqd
_G -> (x e. _B1 <-> x e. _B2)
6 3, 5 aneqd
_G -> (x e. _A1 /\ x e. _B1 <-> x e. _A2 /\ x e. _B2)
7 6 abeqd
_G -> {x | x e. _A1 /\ x e. _B1} == {x | x e. _A2 /\ x e. _B2}
8 7 conv Inter
_G -> _A1 i^i _B1 == _A2 i^i _B2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)