theorem ineqd (_G: wff) (_A1 _A2 _B1 _B2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> _B1 == _B2 $ >
  $ _G -> _A1 i^i _B1 == _A2 i^i _B2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqidd | _G -> x = x | 
        
          | 2 |  | hyp _Ah | _G -> _A1 == _A2 | 
        
          | 3 | 1, 2 | eleqd | _G -> (x e. _A1 <-> x e. _A2) | 
        
          | 4 |  | hyp _Bh | _G -> _B1 == _B2 | 
        
          | 5 | 1, 4 | eleqd | _G -> (x e. _B1 <-> x e. _B2) | 
        
          | 6 | 3, 5 | aneqd | _G -> (x e. _A1 /\ x e. _B1 <-> x e. _A2 /\ x e. _B2) | 
        
          | 7 | 6 | abeqd | _G -> {x | x e. _A1 /\ x e. _B1} == {x | x e. _A2 /\ x e. _B2} | 
        
          | 8 | 7 | conv Inter | _G -> _A1 i^i _B1 == _A2 i^i _B2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)