theorem ocasep_Tail (S: set): $ ocasep (0 e. S) (Tail S) == S $;
Step | Hyp | Ref | Expression |
1 |
|
ocasep0 |
0 e. ocasep (0 e. S) (Tail S) <-> 0 e. S |
2 |
|
eleq1 |
a1 = 0 -> (a1 e. ocasep (0 e. S) (Tail S) <-> 0 e. ocasep (0 e. S) (Tail S)) |
3 |
|
eleq1 |
a1 = 0 -> (a1 e. S <-> 0 e. S) |
4 |
2, 3 |
bieqd |
a1 = 0 -> (a1 e. ocasep (0 e. S) (Tail S) <-> a1 e. S <-> (0 e. ocasep (0 e. S) (Tail S) <-> 0 e. S)) |
5 |
1, 4 |
mpbiri |
a1 = 0 -> (a1 e. ocasep (0 e. S) (Tail S) <-> a1 e. S) |
6 |
|
exsuc |
a1 != 0 <-> E. a2 a1 = suc a2 |
7 |
6 |
conv ne |
~a1 = 0 <-> E. a2 a1 = suc a2 |
8 |
|
bitr |
(suc a2 e. ocasep (0 e. S) (Tail S) <-> a2 e. Tail S) -> (a2 e. Tail S <-> suc a2 e. S) -> (suc a2 e. ocasep (0 e. S) (Tail S) <-> suc a2 e. S) |
9 |
|
ocasepS |
suc a2 e. ocasep (0 e. S) (Tail S) <-> a2 e. Tail S |
10 |
8, 9 |
ax_mp |
(a2 e. Tail S <-> suc a2 e. S) -> (suc a2 e. ocasep (0 e. S) (Tail S) <-> suc a2 e. S) |
11 |
|
elTail |
a2 e. Tail S <-> suc a2 e. S |
12 |
10, 11 |
ax_mp |
suc a2 e. ocasep (0 e. S) (Tail S) <-> suc a2 e. S |
13 |
|
eleq1 |
a1 = suc a2 -> (a1 e. ocasep (0 e. S) (Tail S) <-> suc a2 e. ocasep (0 e. S) (Tail S)) |
14 |
|
eleq1 |
a1 = suc a2 -> (a1 e. S <-> suc a2 e. S) |
15 |
13, 14 |
bieqd |
a1 = suc a2 -> (a1 e. ocasep (0 e. S) (Tail S) <-> a1 e. S <-> (suc a2 e. ocasep (0 e. S) (Tail S) <-> suc a2 e. S)) |
16 |
12, 15 |
mpbiri |
a1 = suc a2 -> (a1 e. ocasep (0 e. S) (Tail S) <-> a1 e. S) |
17 |
16 |
eex |
E. a2 a1 = suc a2 -> (a1 e. ocasep (0 e. S) (Tail S) <-> a1 e. S) |
18 |
7, 17 |
sylbi |
~a1 = 0 -> (a1 e. ocasep (0 e. S) (Tail S) <-> a1 e. S) |
19 |
5, 18 |
cases |
a1 e. ocasep (0 e. S) (Tail S) <-> a1 e. S |
20 |
19 |
ax_gen |
A. a1 (a1 e. ocasep (0 e. S) (Tail S) <-> a1 e. S) |
21 |
20 |
conv eqs |
ocasep (0 e. S) (Tail S) == S |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)