theorem Tail_ocasep (S: set) (z: wff): $ Tail (ocasep z S) == S $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a1 e. Tail (ocasep z S) <-> suc a1 e. ocasep z S) -> (suc a1 e. ocasep z S <-> a1 e. S) -> (a1 e. Tail (ocasep z S) <-> a1 e. S) |
2 |
|
elTail |
a1 e. Tail (ocasep z S) <-> suc a1 e. ocasep z S |
3 |
1, 2 |
ax_mp |
(suc a1 e. ocasep z S <-> a1 e. S) -> (a1 e. Tail (ocasep z S) <-> a1 e. S) |
4 |
|
ocasepS |
suc a1 e. ocasep z S <-> a1 e. S |
5 |
3, 4 |
ax_mp |
a1 e. Tail (ocasep z S) <-> a1 e. S |
6 |
5 |
ax_gen |
A. a1 (a1 e. Tail (ocasep z S) <-> a1 e. S) |
7 |
6 |
conv eqs |
Tail (ocasep z S) == S |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)