Theorem Tail_ocasep | index | src |

theorem Tail_ocasep (S: set) (z: wff): $ Tail (ocasep z S) == S $;
StepHypRefExpression
1 bitr
(a1 e. Tail (ocasep z S) <-> suc a1 e. ocasep z S) -> (suc a1 e. ocasep z S <-> a1 e. S) -> (a1 e. Tail (ocasep z S) <-> a1 e. S)
2 elTail
a1 e. Tail (ocasep z S) <-> suc a1 e. ocasep z S
3 1, 2 ax_mp
(suc a1 e. ocasep z S <-> a1 e. S) -> (a1 e. Tail (ocasep z S) <-> a1 e. S)
4 ocasepS
suc a1 e. ocasep z S <-> a1 e. S
5 3, 4 ax_mp
a1 e. Tail (ocasep z S) <-> a1 e. S
6 5 ax_gen
A. a1 (a1 e. Tail (ocasep z S) <-> a1 e. S)
7 6 conv eqs
Tail (ocasep z S) == S

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)