Theorem obindeqd | index | src |

theorem obindeqd (_G: wff) (_a1 _a2: nat) (_F1 _F2: set):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _F1 == _F2 $ >
  $ _G -> obind _a1 _F1 = obind _a2 _F2 $;
StepHypRefExpression
1 eqidd
_G -> 0 = 0
2 hyp _Fh
_G -> _F1 == _F2
3 1, 2 ocaseeqd
_G -> ocase 0 _F1 == ocase 0 _F2
4 hyp _ah
_G -> _a1 = _a2
5 3, 4 appeqd
_G -> ocase 0 _F1 @ _a1 = ocase 0 _F2 @ _a2
6 5 conv obind
_G -> obind _a1 _F1 = obind _a2 _F2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)