Theorem leneq0 | index | src |

theorem leneq0 (n: nat): $ len n = 0 <-> n = 0 $;
StepHypRefExpression
1 ax_3
(~n = 0 -> ~len n = 0) -> len n = 0 -> n = 0
2 sucne0
len n = suc (len (snd (n - 1))) -> len n != 0
3 2 conv ne
len n = suc (len (snd (n - 1))) -> ~len n = 0
4 lenS
len (fst (n - 1) : snd (n - 1)) = suc (len (snd (n - 1)))
5 consfstsnd
n != 0 -> fst (n - 1) : snd (n - 1) = n
6 5 conv ne
~n = 0 -> fst (n - 1) : snd (n - 1) = n
7 6 eqcomd
~n = 0 -> n = fst (n - 1) : snd (n - 1)
8 7 leneqd
~n = 0 -> len n = len (fst (n - 1) : snd (n - 1))
9 4, 8 syl6eq
~n = 0 -> len n = suc (len (snd (n - 1)))
10 3, 9 syl
~n = 0 -> ~len n = 0
11 1, 10 ax_mp
len n = 0 -> n = 0
12 len0
len 0 = 0
13 leneq
n = 0 -> len n = len 0
14 12, 13 syl6eq
n = 0 -> len n = 0
15 11, 14 ibii
len n = 0 <-> n = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)