theorem leneq0 (n: nat): $ len n = 0 <-> n = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
ax_3 |
(~n = 0 -> ~len n = 0) -> len n = 0 -> n = 0 |
2 |
|
sucne0 |
len n = suc (len (snd (n - 1))) -> len n != 0 |
3 |
2 |
conv ne |
len n = suc (len (snd (n - 1))) -> ~len n = 0 |
4 |
|
lenS |
len (fst (n - 1) : snd (n - 1)) = suc (len (snd (n - 1))) |
5 |
|
consfstsnd |
n != 0 -> fst (n - 1) : snd (n - 1) = n |
6 |
5 |
conv ne |
~n = 0 -> fst (n - 1) : snd (n - 1) = n |
7 |
6 |
eqcomd |
~n = 0 -> n = fst (n - 1) : snd (n - 1) |
8 |
7 |
leneqd |
~n = 0 -> len n = len (fst (n - 1) : snd (n - 1)) |
9 |
4, 8 |
syl6eq |
~n = 0 -> len n = suc (len (snd (n - 1))) |
10 |
3, 9 |
syl |
~n = 0 -> ~len n = 0 |
11 |
1, 10 |
ax_mp |
len n = 0 -> n = 0 |
12 |
|
len0 |
len 0 = 0 |
13 |
|
leneq |
n = 0 -> len n = len 0 |
14 |
12, 13 |
syl6eq |
n = 0 -> len n = 0 |
15 |
11, 14 |
ibii |
len n = 0 <-> n = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)