Theorem consfstsnd | index | src |

theorem consfstsnd (a: nat): $ a != 0 -> fst (a - 1) : snd (a - 1) = a $;
StepHypRefExpression
1 suceq
fst (a - 1), snd (a - 1) = a - 1 -> suc (fst (a - 1), snd (a - 1)) = suc (a - 1)
2 1 conv cons
fst (a - 1), snd (a - 1) = a - 1 -> fst (a - 1) : snd (a - 1) = suc (a - 1)
3 fstsnd
fst (a - 1), snd (a - 1) = a - 1
4 2, 3 ax_mp
fst (a - 1) : snd (a - 1) = suc (a - 1)
5 sub1can
a != 0 -> suc (a - 1) = a
6 4, 5 syl5eq
a != 0 -> fst (a - 1) : snd (a - 1) = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)