theorem len1 (a: nat): $ len (a : 0) = 1 $;
| Step | Hyp | Ref | Expression |
| 1 |
|
eqtr |
len (a : 0) = suc (len 0) -> suc (len 0) = 1 -> len (a : 0) = 1 |
| 2 |
|
lenS |
len (a : 0) = suc (len 0) |
| 3 |
1, 2 |
ax_mp |
suc (len 0) = 1 -> len (a : 0) = 1 |
| 4 |
|
suceq |
len 0 = 0 -> suc (len 0) = suc 0 |
| 5 |
4 |
conv d1 |
len 0 = 0 -> suc (len 0) = 1 |
| 6 |
|
len0 |
len 0 = 0 |
| 7 |
5, 6 |
ax_mp |
suc (len 0) = 1 |
| 8 |
3, 7 |
ax_mp |
len (a : 0) = 1 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)