Theorem len1 | index | src |

theorem len1 (a: nat): $ len (a : 0) = 1 $;
StepHypRefExpression
1 eqtr
len (a : 0) = suc (len 0) -> suc (len 0) = 1 -> len (a : 0) = 1
2 lenS
len (a : 0) = suc (len 0)
3 1, 2 ax_mp
suc (len 0) = 1 -> len (a : 0) = 1
4 suceq
len 0 = 0 -> suc (len 0) = suc 0
5 4 conv d1
len 0 = 0 -> suc (len 0) = 1
6 len0
len 0 = 0
7 5, 6 ax_mp
suc (len 0) = 1
8 3, 7 ax_mp
len (a : 0) = 1

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)