theorem inseqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> _a1 ; _b1 = _a2 ; _b2 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqidd | 
          _G -> x = x  | 
        
        
          | 2 | 
           | 
          hyp _ah | 
          _G -> _a1 = _a2  | 
        
        
          | 3 | 
          1, 2 | 
          eqeqd | 
          _G -> (x = _a1 <-> x = _a2)  | 
        
        
          | 4 | 
           | 
          hyp _bh | 
          _G -> _b1 = _b2  | 
        
        
          | 5 | 
          4 | 
          nseqd | 
          _G -> _b1 == _b2  | 
        
        
          | 6 | 
          1, 5 | 
          eleqd | 
          _G -> (x e. _b1 <-> x e. _b2)  | 
        
        
          | 7 | 
          3, 6 | 
          oreqd | 
          _G -> (x = _a1 \/ x e. _b1 <-> x = _a2 \/ x e. _b2)  | 
        
        
          | 8 | 
          7 | 
          abeqd | 
          _G -> {x | x = _a1 \/ x e. _b1} == {x | x = _a2 \/ x e. _b2} | 
        
        
          | 9 | 
          8 | 
          lowereqd | 
          _G -> lower {x | x = _a1 \/ x e. _b1} = lower {x | x = _a2 \/ x e. _b2} | 
        
        
          | 10 | 
          9 | 
          conv ins | 
          _G -> _a1 ; _b1 = _a2 ; _b2  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)