theorem inseqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
$ _G -> _a1 = _a2 $ >
$ _G -> _b1 = _b2 $ >
$ _G -> _a1 ; _b1 = _a2 ; _b2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> x = x |
2 |
|
hyp _ah |
_G -> _a1 = _a2 |
3 |
1, 2 |
eqeqd |
_G -> (x = _a1 <-> x = _a2) |
4 |
|
hyp _bh |
_G -> _b1 = _b2 |
5 |
4 |
nseqd |
_G -> _b1 == _b2 |
6 |
1, 5 |
eleqd |
_G -> (x e. _b1 <-> x e. _b2) |
7 |
3, 6 |
oreqd |
_G -> (x = _a1 \/ x e. _b1 <-> x = _a2 \/ x e. _b2) |
8 |
7 |
abeqd |
_G -> {x | x = _a1 \/ x e. _b1} == {x | x = _a2 \/ x e. _b2} |
9 |
8 |
lowereqd |
_G -> lower {x | x = _a1 \/ x e. _b1} = lower {x | x = _a2 \/ x e. _b2} |
10 |
9 |
conv ins |
_G -> _a1 ; _b1 = _a2 ; _b2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)