Theorem inseqd | index | src |

theorem inseqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> _a1 ; _b1 = _a2 ; _b2 $;
StepHypRefExpression
1 eqidd
_G -> x = x
2 hyp _ah
_G -> _a1 = _a2
3 1, 2 eqeqd
_G -> (x = _a1 <-> x = _a2)
4 hyp _bh
_G -> _b1 = _b2
5 4 nseqd
_G -> _b1 == _b2
6 1, 5 eleqd
_G -> (x e. _b1 <-> x e. _b2)
7 3, 6 oreqd
_G -> (x = _a1 \/ x e. _b1 <-> x = _a2 \/ x e. _b2)
8 7 abeqd
_G -> {x | x = _a1 \/ x e. _b1} == {x | x = _a2 \/ x e. _b2}
9 8 lowereqd
_G -> lower {x | x = _a1 \/ x e. _b1} = lower {x | x = _a2 \/ x e. _b2}
10 9 conv ins
_G -> _a1 ; _b1 = _a2 ; _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)