theorem inseqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> _a1 ; _b1 = _a2 ; _b2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqidd | _G -> x = x | 
        
          | 2 |  | hyp _ah | _G -> _a1 = _a2 | 
        
          | 3 | 1, 2 | eqeqd | _G -> (x = _a1 <-> x = _a2) | 
        
          | 4 |  | hyp _bh | _G -> _b1 = _b2 | 
        
          | 5 | 4 | nseqd | _G -> _b1 == _b2 | 
        
          | 6 | 1, 5 | eleqd | _G -> (x e. _b1 <-> x e. _b2) | 
        
          | 7 | 3, 6 | oreqd | _G -> (x = _a1 \/ x e. _b1 <-> x = _a2 \/ x e. _b2) | 
        
          | 8 | 7 | abeqd | _G -> {x | x = _a1 \/ x e. _b1} == {x | x = _a2 \/ x e. _b2} | 
        
          | 9 | 8 | lowereqd | _G -> lower {x | x = _a1 \/ x e. _b1} = lower {x | x = _a2 \/ x e. _b2} | 
        
          | 10 | 9 | conv ins | _G -> _a1 ; _b1 = _a2 ; _b2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)