theorem dropArray (A: set) (l m n: nat):
$ l e. Array A (m + n) -> drop l m e. Array A n $;
Step | Hyp | Ref | Expression |
1 |
|
elArray |
drop l m e. Array A n <-> drop l m e. List A /\ len (drop l m) = n |
2 |
|
appendT |
take l m ++ drop l m e. List A <-> take l m e. List A /\ drop l m e. List A |
3 |
|
eleq1 |
take l m ++ drop l m = l -> (take l m ++ drop l m e. List A <-> l e. List A) |
4 |
|
takedrop |
take l m ++ drop l m = l |
5 |
3, 4 |
ax_mp |
take l m ++ drop l m e. List A <-> l e. List A |
6 |
|
elArrayList |
l e. Array A (m + n) -> l e. List A |
7 |
5, 6 |
sylibr |
l e. Array A (m + n) -> take l m ++ drop l m e. List A |
8 |
2, 7 |
sylib |
l e. Array A (m + n) -> take l m e. List A /\ drop l m e. List A |
9 |
8 |
anrd |
l e. Array A (m + n) -> drop l m e. List A |
10 |
|
droplen |
len (drop l m) = len l - m |
11 |
|
pncan2 |
m + n - m = n |
12 |
|
elArraylen |
l e. Array A (m + n) -> len l = m + n |
13 |
12 |
subeq1d |
l e. Array A (m + n) -> len l - m = m + n - m |
14 |
11, 13 |
syl6eq |
l e. Array A (m + n) -> len l - m = n |
15 |
10, 14 |
syl5eq |
l e. Array A (m + n) -> len (drop l m) = n |
16 |
9, 15 |
iand |
l e. Array A (m + n) -> drop l m e. List A /\ len (drop l m) = n |
17 |
1, 16 |
sylibr |
l e. Array A (m + n) -> drop l m e. Array A n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)