Theorem droplen | index | src |

theorem droplen (l n: nat): $ len (drop l n) = len l - n $;
StepHypRefExpression
1 lenlfn
len (lfn (\ a1, nth (a1 + n) l - 1) (len l - n)) = len l - n
2 1 conv drop
len (drop l n) = len l - n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)