Step | Hyp | Ref | Expression |
1 |
|
anll |
coprime a b /\ x || a /\ x || b -> coprime a b |
2 |
|
anlr |
coprime a b /\ x || a /\ x || b -> x || a |
3 |
|
anr |
coprime a b /\ x || a /\ x || b -> x || b |
4 |
1, 2, 3 |
dvdcop |
coprime a b /\ x || a /\ x || b -> x = 1 |
5 |
4 |
exp |
coprime a b /\ x || a -> x || b -> x = 1 |
6 |
5 |
ialda |
coprime a b -> A. x (x || a -> x || b -> x = 1) |
7 |
|
dvd11 |
1 || a |
8 |
|
dvdtr |
y || 1 -> 1 || a -> y || a |
9 |
7, 8 |
mpi |
y || 1 -> y || a |
10 |
|
dvd11 |
1 || b |
11 |
|
dvdtr |
y || 1 -> 1 || b -> y || b |
12 |
10, 11 |
mpi |
y || 1 -> y || b |
13 |
9, 12 |
iand |
y || 1 -> y || a /\ y || b |
14 |
13 |
a1i |
A. x (x || a -> x || b -> x = 1) -> y || 1 -> y || a /\ y || b |
15 |
|
dvd12 |
y || 1 <-> y = 1 |
16 |
|
anrr |
A. x (x || a -> x || b -> x = 1) /\ (y || a /\ y || b) -> y || b |
17 |
|
anrl |
A. x (x || a -> x || b -> x = 1) /\ (y || a /\ y || b) -> y || a |
18 |
|
dvdeq1 |
x = y -> (x || a <-> y || a) |
19 |
|
dvdeq1 |
x = y -> (x || b <-> y || b) |
20 |
|
eqeq1 |
x = y -> (x = 1 <-> y = 1) |
21 |
19, 20 |
imeqd |
x = y -> (x || b -> x = 1 <-> y || b -> y = 1) |
22 |
18, 21 |
imeqd |
x = y -> (x || a -> x || b -> x = 1 <-> y || a -> y || b -> y = 1) |
23 |
22 |
eale |
A. x (x || a -> x || b -> x = 1) -> y || a -> y || b -> y = 1 |
24 |
23 |
anwl |
A. x (x || a -> x || b -> x = 1) /\ (y || a /\ y || b) -> y || a -> y || b -> y = 1 |
25 |
17, 24 |
mpd |
A. x (x || a -> x || b -> x = 1) /\ (y || a /\ y || b) -> y || b -> y = 1 |
26 |
16, 25 |
mpd |
A. x (x || a -> x || b -> x = 1) /\ (y || a /\ y || b) -> y = 1 |
27 |
15, 26 |
sylibr |
A. x (x || a -> x || b -> x = 1) /\ (y || a /\ y || b) -> y || 1 |
28 |
27 |
exp |
A. x (x || a -> x || b -> x = 1) -> y || a /\ y || b -> y || 1 |
29 |
14, 28 |
ibid |
A. x (x || a -> x || b -> x = 1) -> (y || 1 <-> y || a /\ y || b) |
30 |
29 |
eqgcd |
A. x (x || a -> x || b -> x = 1) -> gcd a b = 1 |
31 |
30 |
conv coprime |
A. x (x || a -> x || b -> x = 1) -> coprime a b |
32 |
6, 31 |
ibii |
coprime a b <-> A. x (x || a -> x || b -> x = 1) |