Theorem copbezout | index | src |

theorem copbezout (G: wff) (a b: nat) {x y: nat}:
  $ G -> coprime a b $ >
  $ G -> a != 0 $ >
  $ G -> E. x E. y x * a = y * b + 1 $;
StepHypRefExpression
1 hyp h1
G -> coprime a b
2 1 conv coprime
G -> gcd a b = 1
3 2 addeq2d
G -> y * b + gcd a b = y * b + 1
4 3 eqeq2d
G -> (x * a = y * b + gcd a b <-> x * a = y * b + 1)
5 4 exeqd
G -> (E. y x * a = y * b + gcd a b <-> E. y x * a = y * b + 1)
6 5 exeqd
G -> (E. x E. y x * a = y * b + gcd a b <-> E. x E. y x * a = y * b + 1)
7 bezout
a != 0 -> E. x E. y x * a = y * b + gcd a b
8 hyp h2
G -> a != 0
9 7, 8 syl
G -> E. x E. y x * a = y * b + gcd a b
10 6, 9 mpbid
G -> E. x E. y x * a = y * b + 1

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)