Theorem bezout | index | src |

theorem bezout (a b: nat) {x y: nat}:
  $ a != 0 -> E. x E. y x * a = y * b + gcd a b $;
StepHypRefExpression
1 bgcdbezout
E. x E. y x * a = y * b + bgcd a b
2 gcdbgcd
a != 0 -> gcd a b = bgcd a b
3 2 addeq2d
a != 0 -> y * b + gcd a b = y * b + bgcd a b
4 3 eqeq2d
a != 0 -> (x * a = y * b + gcd a b <-> x * a = y * b + bgcd a b)
5 4 exeqd
a != 0 -> (E. y x * a = y * b + gcd a b <-> E. y x * a = y * b + bgcd a b)
6 5 exeqd
a != 0 -> (E. x E. y x * a = y * b + gcd a b <-> E. x E. y x * a = y * b + bgcd a b)
7 1, 6 mpbiri
a != 0 -> E. x E. y x * a = y * b + gcd a b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)