theorem bgcdeqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
$ _G -> _a1 = _a2 $ >
$ _G -> _b1 = _b2 $ >
$ _G -> bgcd _a1 _b1 = bgcd _a2 _b2 $;
Step | Hyp | Ref | Expression |
1 |
|
biidd |
_G -> (0 < d <-> 0 < d) |
2 |
|
eqidd |
_G -> x = x |
3 |
|
hyp _ah |
_G -> _a1 = _a2 |
4 |
2, 3 |
muleqd |
_G -> x * _a1 = x * _a2 |
5 |
|
eqidd |
_G -> y = y |
6 |
|
hyp _bh |
_G -> _b1 = _b2 |
7 |
5, 6 |
muleqd |
_G -> y * _b1 = y * _b2 |
8 |
|
eqidd |
_G -> d = d |
9 |
7, 8 |
addeqd |
_G -> y * _b1 + d = y * _b2 + d |
10 |
4, 9 |
eqeqd |
_G -> (x * _a1 = y * _b1 + d <-> x * _a2 = y * _b2 + d) |
11 |
10 |
exeqd |
_G -> (E. y x * _a1 = y * _b1 + d <-> E. y x * _a2 = y * _b2 + d) |
12 |
11 |
exeqd |
_G -> (E. x E. y x * _a1 = y * _b1 + d <-> E. x E. y x * _a2 = y * _b2 + d) |
13 |
1, 12 |
aneqd |
_G -> (0 < d /\ E. x E. y x * _a1 = y * _b1 + d <-> 0 < d /\ E. x E. y x * _a2 = y * _b2 + d) |
14 |
13 |
abeqd |
_G -> {d | 0 < d /\ E. x E. y x * _a1 = y * _b1 + d} == {d | 0 < d /\ E. x E. y x * _a2 = y * _b2 + d} |
15 |
14 |
leasteqd |
_G -> least {d | 0 < d /\ E. x E. y x * _a1 = y * _b1 + d} = least {d | 0 < d /\ E. x E. y x * _a2 = y * _b2 + d} |
16 |
15 |
conv bgcd |
_G -> bgcd _a1 _b1 = bgcd _a2 _b2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(addeq,
muleq)