Theorem gcd00 | index | src |

theorem gcd00: $ gcd 0 0 = 0 $;
StepHypRefExpression
1 bith
x || 0 -> x || 0 /\ x || 0 -> (x || 0 <-> x || 0 /\ x || 0)
2 dvd02
x || 0
3 1, 2 ax_mp
x || 0 /\ x || 0 -> (x || 0 <-> x || 0 /\ x || 0)
4 ian
x || 0 -> x || 0 -> x || 0 /\ x || 0
5 4, 2 ax_mp
x || 0 -> x || 0 /\ x || 0
6 5, 2 ax_mp
x || 0 /\ x || 0
7 3, 6 ax_mp
x || 0 <-> x || 0 /\ x || 0
8 7 a1i
T. -> (x || 0 <-> x || 0 /\ x || 0)
9 8 eqgcd
T. -> gcd 0 0 = 0
10 9 trud
gcd 0 0 = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)